
CPE 470 - Macros

Macro Dimensioning

- Macros are hand placed by designer
 - Unless using specialized tools
- Die Area is defined with set size
 - o [0, 0, x, y] creates x by y die size
 - $\circ \quad \mathsf{x} \to \mathsf{width}, \mathsf{y} \to \mathsf{height}$

- Macros placed in die using bottom left corner
 - Coordinates [x1, y1] define bottom left corner placement

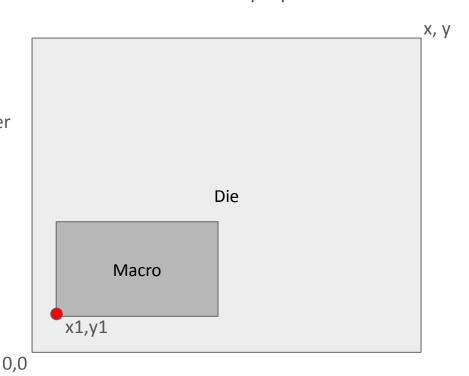
• Dimensions defined in **LEF** file

```
MACRO DFFRAM256x32

CLASS BLOCK;

FOREIGN DFFRAM256x32;

ORIGIN 0.000 0.000;


SIZE 1152.795 BY 535.550;

x by y
```

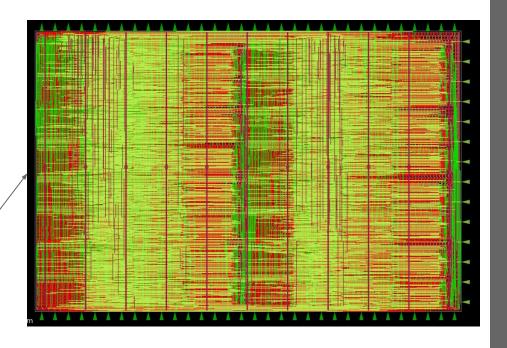
Glossary

Macros: pre-laid-out blocks used by a design, similar to Hard IP

LEF: Library Exchange Format, defines dimensions and pin placement of macros

Rotation

- Macros are rotated and flipped as needed
 - Used to get pins closer to where they are needed
 - Change shape to fit


- LEF Standard: Cardinal Directions define rotation
 - Most commonly North or South due to layer directionality
- Flipping generally mirrors over the Y axis

LEF/DEF	OpenAccess	Definition
N (North)	R0	
S (South)	R180	
W (West)	R90	
E (East)	R270	
FN (Flipped North)	MY	
FS (Flipped South)	MX	
FW (Flipped West)	MX90	
FE (Flipped East)	MY90	

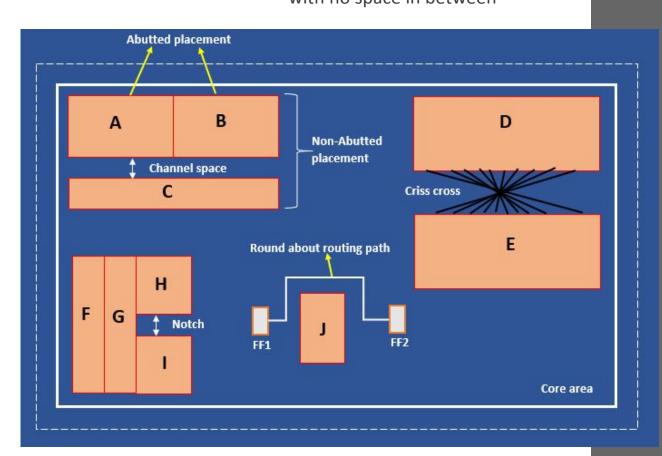
Placement Considerations

- Where are the pins?
 - Pins should be rotated so that they are accessible
 - Not up against edge
- Macros near enough to edge
 - Center of chip most likely used for routing, logic
 - Not so close to edge as to be unroutable

Lack of pins on one side, Could be placed right up next to another macro

Multi Macro Considerations

Glossary

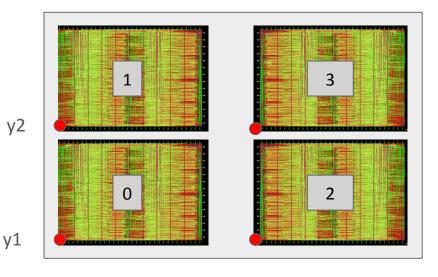

Abutted: placed directly next to with no space in between

Consider:

- + Channel Space
 - Often need room to route wires between macros
- + Abutted or Non-Abutted
 - No Pins on Side →
 Abutted saves area
 - Otherwise, need channels to route

Avoid:

- Notches
 - Creates Unusable Area
- Criss Cross
 - Difficult to Route
- Roundabout Paths
 - Don't place macros in highly congested areas


Placement Example

For example, Assume:

- DFFRAM macros are 1200x600 μm
- Minimum channel width of 100 μm
- Center of die is to be kept free for routing
 - Start with a minimum central channel width (x) of 400 μm
 - In this example, we have less room in the y direction

How do we lay out each macro?

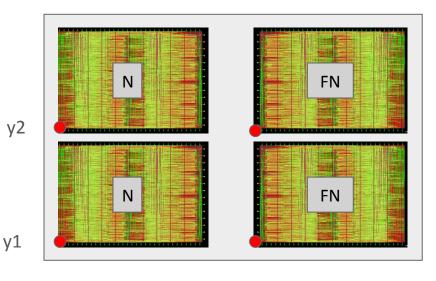
What should our die area be?

x2

x1

Placement Example Solution

Rotations:


- Pin-free sides should face out
 - Left two macros → North (normal) Right two macros → Flipped North

Die Area:

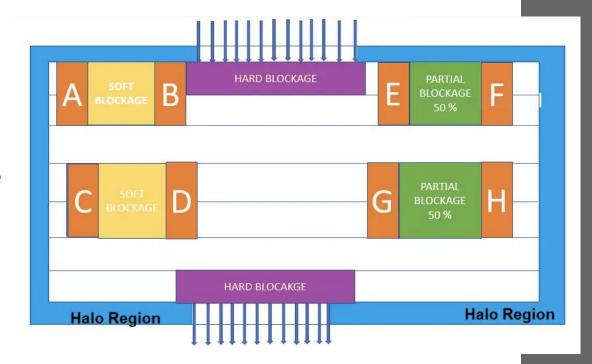
- Width: 2 macros + 2 Channels + 1 Central
 - o 2*1200+2*100+400 = 3000
- Height: 2 macros + 3 Channels 2*600+3*100 = 1500

Positions:

- $X1 \rightarrow 100$ um (Channel width)
- $X2 \rightarrow 1700 \text{ um}$
 - Die (macro + channel)
- $Y1 \rightarrow 100 \text{ um}$ (Channel width)
- $Y2 \rightarrow 800 \text{ um}$
 - channel + macro + channel

x1

x2

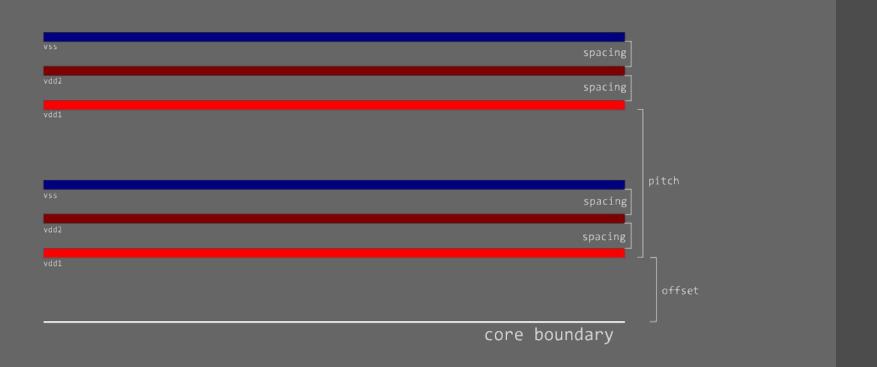

Halos and Blockages

- Macros are surrounded by Halos that prevent too-close cells
- Can configure blockages in high congestion areas
 - Prevent logic placement to make routing easier
- Soft Blockage: no standard cells can be placed, only buffers
 - Ideal in difficult to reach places where logic would be sub-optimal
- Hard Blockage: no cells can be placed
 - Ideal in areas of extremely high routing congestion, such as macro IO

Glossary

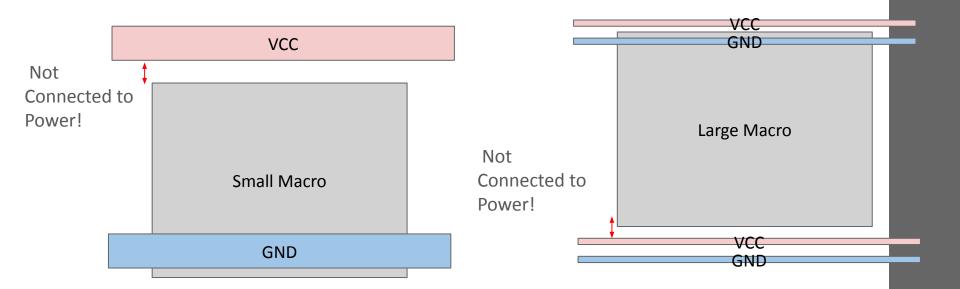
Halo: area surrounding a macro that does not allow placement of standard cells **Blockage**: places where cell placement is

restricted


Power Straps

Glossary

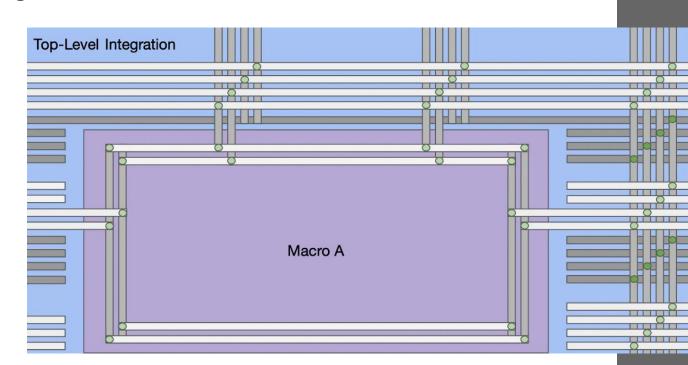
Straps: wires that connect to power pads, existing on topmost metal layers


Spacing: distance between straps within a group

Pitch: distance between groups of straps

Power Distribution Network Integration

- Macros have their own PDN from when they were laid out
 - Have to connect our PDN to their PDN
- If either our PDN's spacing or pitch is too large, Macro won't get power
 - Solution → Lower spacing or pitch
 - \circ Problem \rightarrow leads to more power wires, less space for routing signals



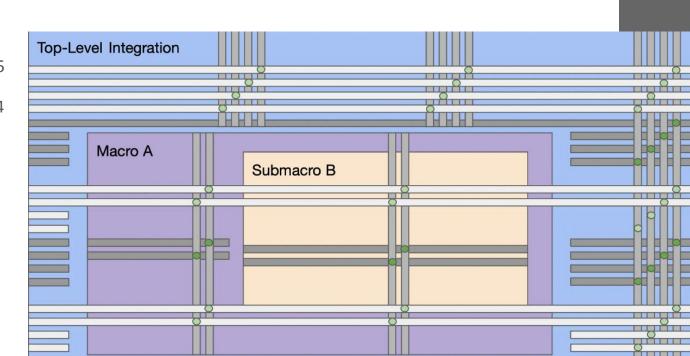
PDN Rings

- Macro PDN is shaped differently than top-level PDN
 - Need a way to integrate them
- Solution: Rings
 - Inside Ring, Macro has its own PDN
 - Ring provides attachment point
- Sacrifices Area
 - Ring is a border between two PDNs
 - Can't have logic under ring
 - Expands Halo

Glossary

Rings: top-level metal structures that surround a macro to connect its PDN to an outer PDN

PDN without Rings


Glossary

Integrator: top-level PDN metal layer that connects to all macros

- Rings waste a lot of area around each macro, which adds up (especially with nested macros)
- Instead, use a different top metal layer per macro
- Top level uses metal5 as integrator
- Macro A cannot use metal 5 at all, uses metal4 for PDN
- Macro B cannot use metal 4 or 5, uses metal3 for PDN

Tradeoffs:

- lose one routing layer per nested macro
- don't lose as much area
- Good for smaller macros

References

- https://openlane2.readthedocs.io/en/latest/usage/pdn.html
- https://coriolis.lip6.fr/doc/lefdef/lefdefref/DEFSyntax.html
- https://vlsitalks.com/physical-design/floorplan/
- https://siliconvlsi.com/blockages-and-halos-in-vlsi/

•